Predicting Driver Performance 1 Running head: PREDICTING DRIVER PERFORMANCE Sleep Loss and Driver Performance: Quantitative Predictions with Zero Free Parameters

نویسندگان

  • Glenn Gunzelmann
  • Richard Moore
  • Dario D. Salvucci
  • Kevin A. Gluck
چکیده

Fatigue has been implicated in an alarming number of motor vehicle accidents, costing billions of dollars and thousands of lives. Unfortunately, the ability to predict performance impairments in complex task domains like driving is limited by a gap in our understanding of the explanatory mechanisms. In this paper, we describe an attempt to generate a priori predictions of degradations in driver performance due to sleep deprivation. We accomplish this by integrating an existing account of the effects of sleep loss and circadian rhythms on sustained attention performance with a validated model of driver behavior. The predicted results account for published qualitative trends for driving across multiple days of restricted sleep and total sleep deprivation. The quantitative results show that the model’s performance is worse at baseline and degrades less severely than human driving, and expose some critical areas for future research. Overall, the results illustrate the potential value of model reuse and integration for improving our understanding of important psychological phenomena and for making useful predictions of performance in applied, naturalistic task contexts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep loss and driver performance: Quantitative predictions with zero free parameters

Fatigue has been implicated in an alarming number of motor vehicle accidents, costing billions of dollars and thousands of lives. Unfortunately, the ability to predict performance impairments in complex task domains like driving is limited by a gap in our understanding of the explanatory mechanisms. In this paper, we describe an attempt to generate a priori predictions of degradations in driver...

متن کامل

Fluctuations in Alertness and Sustained Attention: Predicting Driver Performance

Fatigue has been implicated in an alarming number of motor vehicle accidents, costing billions of dollars and thousands of lives. Unfortunately, the ability to predict performance impairments in complex task domains like driving is limited by a gap in our understanding of the explanatory mechanisms. In this paper, we describe an attempt to generate a priori predictions of degradations in driver...

متن کامل

Predicting the effects of cellular-phone dialing on driver performance

Legislators, journalists, and researchers alike have recently directed a great deal of attention to the effects of cellular telephone (‘cell phone’) use on driver behavior and performance. This paper demonstrates how cognitive modeling can aid in understanding these effects by predicting the impact of cell-phone dialing in a naturalistic driving task. We developed models of four methods of cell...

متن کامل

Predicting the Effects of Cell-Phone Dialing on Driver Performance

Legislators, journalists, and researchers alike have recently directed a great deal of attention to the effects of cellular telephone ("cell phone") use on driver behavior and performance. This paper demonstrates how cognitive modeling can aid in understanding these effects by predicting the impact of cell-phone dialing in a naturalistic driving task. We developed models of four methods of cell...

متن کامل

Developing a Model of Heterogeneity in Driver’s Behavior

Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010